

# Scaling Power and the Future of CMOS

*Mark Horowitz, EE/CS Stanford University* 

# A Long Time Ago

In a building far away

A man made a prediction

On surprisingly little data

That has defined an industry

# Moore's Law



## **CMOS Computer Performance**



## **CMOS Computer Performance**



# **Moore's Original Issues**

# Design cost Power dissipation

## What to do with all the functionality possible



ftp://download.intel.com/research/silicon/moorespaper.pdf

# **Scaling MOS Devices**



JSSC Oct 74, pg 256

## In this ideal scaling

- V scales to  $\alpha$ V, L scales to  $\alpha$ L
- So C scales to  $\alpha$ C, i scales to  $\alpha$ i (i/ $\mu$  is stable)
- Delay = CV/I scales as α
- Energy =  $CV^2$  scales as  $\alpha^3$

## **Processor Power**



## **Power Density**



## **Why Power Increased**



# **Good News**

Die growth & super frequency scaling have stopped



## **Processor Power**

## They were high power too



# **Bad News**

# Voltage scaling has stopped as well

- kT/q does not scale
- Vth scaling has power consequences

## If Vdd does not scale

• Energy scales slowly



# **Technology Scaling Today**

#### **Device sizes are still scaling**

- Cost/device is still scaling down
- This is what is driving scaling

#### Voltages are not scaling very fast

- Threshold voltages set by leakage
- Gate oxide thickness is set by leakage
  This means that the channel lengths are not scaling
  Current is increasing by stressing silicon

## Now Vdd and Vth are set by optimization

#### For computing, I am not optimistic

## **Current problems are set by Physics:**

- Vdd set by kT/q
  Sets the on-off ratio
- Wire energy by CVdd<sup>2</sup>

## To get around these limitations

• Need to create something very different!

## Design processes have been optimized for silicon

• Working on making it better for over 30 years

## Silicon has set:

- Notions of logic (binary signals), digital design styles
- Computing (distinct memory and logic)
- Relative size and speed of memory logic

## No new technology will fit this mold well

- Changing the world is hard
- If you build it, generally they don't come
  - Unless they absolutely have to

# **Maturing of Silicon**

#### Silicon will not disappear

It will still be a huge business
 Growth rate is slower, Eventually very slow scaling

## Silicon will become like concrete and steel

- Basis of a huge industry
- Critical to nearly everything
- But fairly stable and predictable

## Will remain the dominate substrate for computing

• And performance be limited by power dissipation

# **Optimizing Energy**

## Every design is a point on a 2-D plane



# **Optimizing Energy**



# **Optimizing Energy**

## **Every design is a point on a 2-D plane**



Performance

## Shown only one design technique to reduce power

Reduce waste

## Can waste

- Energy (clock gating, leakage control, etc)
- Performance

Adding additional constraints to operation flow

## If technology scaling has stalled

• Need to focus on reducing waste in our systems

Increase in efficiency in our designs will set performance

# **Future Systems**

#### Some simple math

- Assume scaling continues
- Dies don't shrink in size
- Average power/gate must decrease by 2x / gen
  Or need to build systems that increase in power

## Since gates are shrinking in size

- Get 1.4x from capacitive reduction
- Where is the other factor of 1.4x?

## **The Push for Parallelism**



## **Exploit Parallelism / Scale Vdd**

## If you have parallelism

- Add more function units
  Fill up new die (2x)

#### Works well when $\Delta E / \Delta P$ is large

• But what happens when that runs out?



#### Performance

# **Problem Reformulation**

#### Best way to save energy is to do less work

- Energy directly reduced by the reduction in work
- But required time for the function decreases as well
  Convert this into extra power gains
- Shifts the optimal curve down and to the right



## **Optimize execution units for specific applications**

- Reformulate the hardware to reduce needed work
- Can improve energy efficiency for a class of applications

## **DSP/Vector engines are more efficient than CPUs**

- Exploit locality, reuse
- High compute density

## ASICs are more efficient than DSP/Vector engines

• If we want efficiency, we need more application optimization

# **ASIC/SOC** Design Trends

#### Rising non-recurring engineering costs





## Believe in correct by construction?

Believe in a generic high-level design language?

## Historically both have not worked

• I believe history is correct

## Allowing people to connect complex blocks

- Yields a complex validation problem, and a \$20M+ design
- General SoC, SiP will never be cheap

# **Computing's Future:**

## Create a new universal computing platform

- That is more efficient that today/tomorrow's CMP
- Bill Dally is working on this one



# Leverage existing large volume processors for other applications

- GPUs moving into general processing
- OMAP being distributed as Unix system



#### Chip design is expensive since chips are complex

## But the building blocks are well known

- Many of the optimizations are well known too
- Designer often do many of the same steps
- Part of the reason for off-shoring
  Don't need experience

## Getting the system to work is hard

• There is a lot of turning the crank that is needed

## Can we automate some of the crank turning?

# **Chip Generator Idea**



# Another Way To Put It...



## **Smart Memories - A "Pretend" Generator**



Smart Memories Architecture: Single Tile

Chip Generator Derivative

# **Looks Promising**

## Large energy / performance gains are possible:

- Use H.264 as example application
- Use a GP-CMP chip generator
  400-600X initial perf. gap



# **New And Exciting Challenges**



## Conclusions

#### The technology engine driving IT is slowing down

• Power efficiency is the real problem

## **Application optimization leads to efficiency**

• But design is too expensive today to do this

#### Need to rethink design

Build chip generators not chips
 These are virtual programmable chips
 Have tools generates the real chips that customers want